Daten aggregieren mit pandas

I recently came across a „challenge“ where I needed to combine various rows. Each row was identified by Key1 and Key2 and had two interesting columns, Foo and Bar. For each Key1 there may be a few Key2, for each Key2 n Foo/Bar entries. While all Foos are distinct per Key1 and Key2 the Bar column may appear j times.

The goal was to get a list of unique Bar items for each Key1/Key2 combination.

Key1 Key2 Foo Bar
0 C1 T1 a1 rc-1
1 C1 T1 a2 rc-1
2 C1 T1 a3 rc-1
3 C1 T1 a4 rc-1
4 C2 T2 b1 rc-1
5 C2 T2 b2 rc-2
6 C3 T3 c1 rc-3
7 C4 T4 d1 rc-4
8 C4 T4 d2 rc-5
9 C4 T4 d3 rc-4

The following Python code nicely did the job, thanks to

# -*- coding: utf-8 -*-
import pandas as pd
def unique(liste):
    """ takes a list of elements, separated by comma and returns sorted string of unique items separated by comma """
    a = liste.split(',')
    b = sorted(set(a))
    return ','.join(b)
df = pd.read_excel('groupb_Beispiel.xlsx')
grouped = df.groupby(['Key1','Key2'],as_index=False)['Bar'].agg(lambda col: ','.join(col))
grouped = pd.DataFrame(grouped)
grouped['Unique'] = grouped['Bar'].apply(unique)
Key1 Key2 Bar Unique
0 C1 T1 rc-1,rc-1,rc-1,rc-1 rc-1
1 C2 T2 rc-1,rc-2 rc-1,rc-2
2 C3 T3 rc-3 rc-3
3 C4 T4 rc-4,rc-5,rc-4 rc-4,rc-5


Uwe Ziegenhagen mag LaTeX und Python, auch gern in Kombination. Hat Dir dieser Beitrag geholfen und möchtest Du Dich dafür bedanken? Dann unterstütze doch vielleicht die Dingfabrik Köln e.V. mit einem kleinen Beitrag. Details zur Bezahlung findest Du unter Spenden für die Dingfabrik.

More Posts - Website