Archive for the ‘Python / SciPy / pandas’ Category.

CSV-Dateien effizient vergleichen mit pandas

Hier ein bisschen Python-Code, um zwei CSV Dateien miteinander zu vergleichen. Die Ergebnisse des spalten- und zeilenweisen Vergleichs werden dann zusammengefasst dargestellt, um schnell einen Überblick zu bekommen, wo eine tiefergehende Analyse notwendig ist.

import sys
import collections
import pandas as pd
from tabulate import tabulate
 
 
file1 = pd.read_csv('file1.csv', sep=';', encoding='UTF-8')
file2 = pd.read_csv('file2.csv', sep=';', encoding='UTF-8')
 
columnnames1 = list(file1)
columnnames2 = list(file2)
 
if collections.Counter(columnnames1) == collections.Counter(columnnames2):
    print ("Number of columns and Names match, Comparison possible...\n\n")
else:
    print ("Number of columns and Names are not matching!!! Please check the input!")
    sys.exit('Error!')
 
# add suffixes to distinguish between actual and expected in the merger
file1 = file1.add_suffix('_e') # expected
file2 = file2.add_suffix('_t') # t
 
 
# merge them using the given key, use outer join
comparison = pd.merge(file1,file2, how='outer',
                      left_on=['Key_e'],
                      right_on=['Key_t'])
 
# create the columnwise comparison
for col in columnnames1:
    comparison[(col + '_c')] = comparison[(col + '_t')] == comparison[(col + '_e')]
 
# reorder the columns
comparison=comparison.reindex(sorted(comparison.columns),axis=1)
 
print(tabulate(comparison, tablefmt="pipe", headers="keys"))
 
 
# save the result as Excel file
comparison.to_excel('result.xlsx')
 
# names of the comparison column
check_colnames= [s + '_c' for s in columnnames1]
 
# initialize an empty dataframe for the log
logdf=pd.DataFrame(index=[True,False])
 
for column in check_colnames:
    t=comparison[column].value_counts() # returns a series
    tt=pd.DataFrame(t) # makes a DF out of the series
    logdf = logdf.join(tt,how='outer') # join the two dfs
 
# transpose for better readability
logdf = logdf.transpose()
 
# Ensure fixed sequence of the columns
logdf=logdf.reindex(sorted(logdf.columns),axis=1)
 
# write to disk
logdf.to_excel('logfile.xlsx')
 
# for better viewing on the screen
logdf.fillna('-',inplace=True)
pd.options.display.float_format = '{:,.0f}'.format
 
print(tabulate(logdf, tablefmt="pipe", headers="keys"))

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Aktienkurse mit Python und LaTeX auswerten

Hier ein einfaches Beispiel, wie man mit Python und LaTeX ein PDF mit Kursinformationen erstellen kann.

Zuerst der Python-Teil, der die Apple-Kursdaten seit dem 1.1.2021 in einen Dataframe lädt und dann in eine LaTeX-Tabelle schreibt:

import pandas
import pandas_datareader.data as web
 
YAHOO_TODAY="http://download.finance.yahoo.com/d/quotes.csv?s=%s&f=sd1ohgl1vl1"
 
history = web.DataReader('AAPL', "yahoo", start="2021-1-1")
history.to_latex('aapl.tex')

Dann noch der LaTeX-Teil, der a) den Python-Code aus dem LaTeX-Lauf heraus ausführt und b) die erzeugte Tabellen-Datei nur dann einbindet, wenn sie wirklich auch erzeugt wurde.

\documentclass[12pt,ngerman]{scrartcl}
\usepackage[a4paper, top=1cm,bottom=1cm,left=1cm, right=1cm]{geometry}
\usepackage[T1]{fontenc}
\usepackage{booktabs}
 
\makeatletter
\newcommand{\testfileexists}[1]{%
  \IfFileExists{#1}%
    {\def\inputtestedfile{\@@input #1 }}
    {\let\inputtestedfile\@empty}%
}
\makeatother
 
\begin{document}
 
\write18{python runpy.py}
 
  \testfileexists{aapl}
      \inputtestedfile
 
 
\end{document}

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Stripplots mit Seaborn

This entry is part 3 of 3 in the series Seaborn

Mit Seaborn lassen sich auch Stripplots erstellen, hier ein Beispiel. Die Besonderheit ist hier, dass die pd.melt() Funktion genutzt wird, um aus den verschiedenen Variablen des Datensatzes drei Variablen zu machen: eine für den Typ echt/unecht, eine für den Variablennamen und eine für den Wert der jeweiligen Variablen.

#!/usr/bin/env python
# coding: utf-8
 
import seaborn as sns
import pandas as pd
import requests
from bs4 import BeautifulSoup
from io import StringIO
import matplotlib.pylab as plt
 
headers = {
    'Access-Control-Allow-Origin': '*',
    'Access-Control-Allow-Methods': 'GET',
    'Access-Control-Allow-Headers': 'Content-Type',
    'Access-Control-Max-Age': '3600',
    'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0'
}
 
url = "http://www.statistics4u.com/fundstat_eng/data_fluriedw.html"
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, 'html.parser')
 
 
data=soup.find('pre').contents[0]
 
str_object = StringIO(data)
 
df = pd.read_csv(str_object,engine='python',skiprows=5,delim_whitespace=True)
 
# Banknotes BN1 to BN100 are genuine, all others are counterfeit
df['Type'] = 'Counterfeit'
df.loc[df.index[:100], 'Type'] = 'Genuine'
 
print(df)
 
sns.set(style="whitegrid", palette="muted")
 
#df = df[['Left', 'Diagonal', 'Type']]
df = pd.melt(df, "Type", var_name="Variable")
 
sp = sns.stripplot(x="value", 
              y="Variable", 
              hue="Type",
              data=df, 
              dodge=True, 
              alpha=.75, 
              zorder=1)
 
#sp.set(xlim=(127, 143)) 
 
sp.legend_.remove()
plt.show()

Das Bild, was dabei erzeugt wird, ist aber eher schlecht. Da die Variablen teilweise sehr unterschiedliche Skalen haben, erkennt man eigentlich nur Punktwolken, die übereinander liegen.

Die Lösung besteht darin, nur die Variablen gemeinsam zu plotten, die sehr nah beieinander liegende Skalen haben. Dazu entfernt man die beiden Hashes aus den auskommentierten Python-Zeilen, um nur noch die Variablen Left und Diagonal zu plotten und um die Skale anzupassen.

Dann erkennt man im Bild, dass die Diagonale echte und falsche Banknoten schön voneinander trennt.

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Mit StringIO Python-Objekte als Datei nutzen

Im Beitrag „CSV-Dateien mit speziellen Spaltentrennern in Python laden“ hatte ich gezeigt, wie man mit BS4 Dateien aus Webseiten extrahieren und abspeichern kann, um sie dann in pandas weiterzuverarbeiten. Es geht auch ohne den Umweg der CSV-Datei, wenn man die StringIO Klasse aus dem io Modul nutzt.

Wir laden das Modul und instanziieren dann ein Objekt der Klasse mit dem von BS4 gefundenen Datensatz. Diese Objekt wird dann anstelle des Pfades der CSV-Datei an die pd.read_csv() Funktion übergeben.

import pandas as pd
import requests
from bs4 import BeautifulSoup
from io import StringIO
 
headers = {
    'Access-Control-Allow-Origin': '*',
    'Access-Control-Allow-Methods': 'GET',
    'Access-Control-Allow-Headers': 'Content-Type',
    'Access-Control-Max-Age': '3600',
    'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0'
}
 
url = "http://www.statistics4u.com/fundstat_eng/data_fluriedw.html"
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, 'html.parser')
 
data=soup.find('pre').contents[0]
 
str_object = StringIO(data)
 
df = pd.read_csv(str_object,engine='python',skiprows=5,delim_whitespace=True)
print(df)

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Animationen erzeugen mit matplotlib und imagemagick

Hier ein Beispiel, wie man Bilder für eine Animation mit matplotlib erstellen kann, adaptiert von im Netz gefundenen Code

Der folgende Python-Code erzeugt 720 einzelne Bilder und legt diese im Dateisystem ab. Mittels magick -quality 100 *.png outputfile.mpeg werden dann die Bilder zu einem MPEG-Video kombiniert. Hinweis: Nur unter Windows heißt der Befehl „magick“ da „convert“ auch ein Systemprogramm ist.

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D

df = sns.load_dataset('iris')
sns.set(style = "darkgrid")

fig = plt.figure()
fig.set_size_inches(16, 9)

ax = fig.add_subplot(111, projection = '3d')

x = df['sepal_width']
y = df['sepal_length']
z = df['petal_width']

ax.set_xlabel("sepal_width")
ax.set_ylabel("sepal_lesngth")
ax.set_zlabel("petal_width")

c = {'setosa':'red', 'versicolor':'blue', 'virginica':'green'}

ax.scatter(x, y, z,c=df['species'].apply(lambda x: c[x]))

for angle in range(0, 720):
    ax.view_init((angle+1)/10, angle)
    plt.draw()
    plt.savefig('r:/'+str(angle).zfill(3)+'.png')

Eine kürzere Version der Animation habe ich unter https://www.youtube.com/watch?v=gdgvXpq4k1w abgelegt.

Hinweise zu anderen Konvertierungsprogrammen gibt es unter anderem hier: https://www.andrewnoske.com/wiki/Convert_an_image_sequence_to_a_movie

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

CSV-Dateien mit speziellen Spaltentrennern in Python laden

Um einige Klassifikations-Algorithmen in Python ausprobieren zu können habe ich heute die Swiss Banknote Data von Flury und Riedwyl benötigt. Die Daten sind im Netz z.B. unter http://www.statistics4u.com/fundstat_eng/data_fluriedw.html verfügbar, ich wollte sie aber nicht manuell einladen müssen.

Mit dem folgenden Code, adaptiert von https://hackersandslackers.com/scraping-urls-with-beautifulsoup/, kann man die Daten lokal abspeichern und dann in einen pandas Dataframe einladen.

import pandas as pd
import requests
from bs4 import BeautifulSoup
 
headers = {
    'Access-Control-Allow-Origin': '*',
    'Access-Control-Allow-Methods': 'GET',
    'Access-Control-Allow-Headers': 'Content-Type',
    'Access-Control-Max-Age': '3600',
    'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0'
}
 
url = "http://www.statistics4u.com/fundstat_eng/data_fluriedw.html"
req = requests.get(url, headers)
soup = BeautifulSoup(req.content, 'html.parser')
 
a=soup.find('pre').contents[0]
 
with open('banknote.csv','wt') as data:
    data.write(a)
 
df = pd.read_csv('banknote.csv',engine='python',skiprows=5,delim_whitespace=True)
print(df)

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Jupyter Notebooks aus dem lokalen Netz nutzen

Ich habe heute auf einer meiner Linux-Maschinen Jupyter Notebook installiert. Um die — für die Arbeit im lokalen Netz lästigen — Sicherheitsabfragen zu umgehen, habe ich mir ausgehend von https://stackoverflow.com/questions/41159797/how-to-disable-password-request-for-a-jupyter-notebook-session ein kleines Startskript geschrieben:

#! /bin/bash
jupyter notebook --ip='*' --NotebookApp.token='' --NotebookApp.password=''

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

pandas auf der GPU

Mit cudf gibt es ein Paket, das pandas Datenstrukturen auf nvidia-Grafikkarten verarbeiten kann. Einen i7 3770 mit 24 GB RAM habe ich jetzt mit einer CUDA-fähigen Grafikkarte (Typ Quadro P400) ausgestattet, damit ich damit rumspielen arbeiten kann. Unter https://towardsdatascience.com/heres-how-you-can-speedup-pandas-with-cudf-and-gpus-9ddc1716d5f2 findet man passende Beispiele, diese habe ich in einem Jupyter-Notebook laufenlassen.

Ein Geschwindigkeitszuwachs ist erkennbar, insbesondere bei der Matrix-Größe aus dem verlinkten Beispiel war die CUDA-Variante mehr als 3x so schnell wie die CPU-Variante. Das Merge mit der vollen Matrix-Größe lief bei mir leider nicht, da limitieren vermutlich die 2 GB RAM, die die P400 bietet.

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Mehr zu Scatterplots mit Seaborn

This entry is part 2 of 3 in the series Seaborn

Im letzten Beitrag hatten wir mit hue die Zugehörigkeit der Iris Data Orchideen dargestellt, Seaborn besitzt aber mit style und size noch weitere Möglichkeiten der Unterscheidung. style nutzt dabei verschiedene Symbole, size unterschiedliche Punktgrößen. Die verschiedenen Optionen können auch kombiniert werden.

import seaborn as sns
sns.set(style = "darkgrid")
iris=sns.load_dataset('iris')
 
sns.scatterplot(
    x=iris['sepal_width'],
    y=iris['sepal_length'],
    style=iris['species'],
    legend=False
)

import seaborn as sns
sns.set(style = "darkgrid")
iris=sns.load_dataset('iris')
 
sns.scatterplot(
    x=iris['sepal_width'],
    y=iris['sepal_length'],
    size=iris['species'],
    legend=False
)

import seaborn as sns
sns.set(style = "darkgrid")
iris=sns.load_dataset('iris')
 
sns.scatterplot(
    x=iris['sepal_width'],
    y=iris['sepal_length'],
    hue=iris['species'],
    style=iris['species'],
    size=iris['species'],    
    legend=False
)

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website

Scatterplots mit Python und Seaborn

This entry is part 1 of 3 in the series Seaborn

Hier ein einfaches Beispiel für einen Scatterplot mit Python und dem Seaborn Modul. Das Beispiel nutzt den bekannten Iris-Datensatz von R. Fisher, der gut für Klassifikationstechniken genutzt werden kann.

import seaborn as sns
 
iris=sns.load_dataset('iris')
 
sns.scatterplot(x=iris['sepal_width'],y=iris['sepal_length'],hue=iris['species'])

Uwe

Uwe Ziegenhagen likes LaTeX and Python, sometimes even combined. Do you like my content and would like to thank me for it? Consider making a small donation to my local fablab, the Dingfabrik Köln. Details on how to donate can be found here Spenden für die Dingfabrik.

More Posts - Website